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Abstract 

This paper proves that a complete maximal Lorentzian surface in three-dimensional Minkowski 
space is flat iff it is the graph over a timelike plane of a function of one variable. Furthermore, 
we prove that maximal Lorentzian immersions are always unstable. Finally, we find the maximal 
Lorentzian surfaces of revolution. 
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0. Introduction 

The study of minimal surfaces has a long history going back to the experiments of 
the Belgian physicist J. Plateau in 1847. He experimented with a wire dipped in soap 
film and showed that the surface formed was stable with respect to area, that is to say 
slight deformations of the surface increased the area. Later mathematicians showed that the 
surfaces involved were minimal surfaces, i.e. surfaces with mean curvature zero. One can 
prove that for small domains in the surface the area functional has a local minimum. This 
paper answers the corresponding problem in relativity by considering Lorentzian surfaces 
of zero mean curvature in Minkowski space. We prove that these surfaces neither maximize 
nor minimize area. 

There are several interesting papers related to the present paper, see for instance [l-5,7]. 

1. Flat maximal surfaces in k$ 

The metric on R3 is 1 

d+dX,2+dX$ 
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We start with the following lemma. 

Lemma 1.1. Let (b&g) denote a connected, oriented, real analytic, complete maximal 
surface in [w:. Then the following two conditions are equivalent: 

(1) CM g> is&t. 
(2) There exists a timelike plane l7, in WT with unit normal vector v, a real analytic 

function f : I -+ R dejined on an open interval I and a linearfunction L : I7, + [w 
such that 

M = (x + h(x)v ) x E L-‘(Z)], h = f o LIL-lC,). 

Remark 1.2. Briefly (M, g) is flat iff it is the graph of a function h = f o LIL-l (t). 

Proof. To see that (2) implies (1 ), let A denote an isometry of rW: such that 

A(fl,) = I7 = t(n1,x2,0> E R; I (x1,x2) E R:,, A(v) = (O,O, 1). 

Then 

N = A(M) = ((x~,x2,k(x~,x2)) 1 x E A(L-‘(I)) = U), k = f o L o A;. 

Now 

L 0 A$(xl,xn,O) = alxl +am 

and 

kll = f 
If 2 

al, k12 = f”aia2, 

hence 

k22 = f”az, 

K = (kllk22 - kf2)/* = 0. 

To prove that (1) implies (2) let (M, g) be flat and 

G:M-+S; 

denote the Gauss map. Let A denote an orientation preserving isometry of U$ such that 

A(G(p)) = (O,O, 1) 

for some p E M. Let N = A(M) and 

H:N+S; 

denote the Gauss map of N. According to [6] 

Im H c {(t, f t, 1) I t E R]. 

It follows that 

T,n : T,N + TX(,) n, r : N -+ fl, @1,X2,X3) t+ (x1,X2,0) 

is an isomorphism for every q E N. 
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Define stereographic projection 

(T : $\(q3 = 1) -+ A, h992,43) t-+ bIl/(l - 9319 - 42/(1 - 43)). 

According to [6] there are real analytic [L differentiable functions f and g : V -+ IL such 
that 

fl 0 fH 0 @(f,,,(z) = g(z), 

where 

%g) : V -+ N, @(f. g)(ZO) = p, zo E v 

is an isothermal coordinate system on N around p defined by [6, 7.31. 
There are now two possibilities. 
(1) g constant, hence H constant. (2) g nonconstant. We can then assume g’(zu) = (a, *a) 

is null, hence nonzero. 
Now let CT denote the complete null geodesic with initial velocity 

1 
(131) in case (1) , 

u= (a, ra) in case (2) 

in the coordinate system @(f, g). 
Let S denote a null vector field along CJ in TN such that a’(s) and 6(s) are linearly 

independent. 
Let r, denote the complete null geodesic with initial velocity S(s). Since g’ is everywhere 

null or zero 

for small s and t, hence r,‘(r) lies in the two plane through rs (0) orthogonal to H(r,(O)). 
Hence r, can be reparametrized to a null geodesic of l$ for all s E R. So 

Bs(t) = a(s) + tS(s) E N 

for all s. t E R. We claim that 

N c Im /?. 

Assume for contradiction that there exists a q E N\Im p. Since N is connected there exists 
a q* E a Im /T. Since q* E N we can define as above a null geodesic CT* through q* and a 
null vector field 6, along CT* such that CY: (s) and 6, (s) are linearly independent: 

6, t) * a*(s) + ts*(s) 

is a chart on N near (0,O). Maximality implies that 

S:(s) E spant~~(s),&(s)l 

while nondegeneracy of the metric induced by B implies that 

kc(s), 6*(s)) = 0 
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so 6:(s), the covariant derivative of 6, in I@, and 6,(s) are colinear. We can then assume 
that 6, is constant. 

We can then also assume 6 is constant. By connectedness of N we can assume 6 = 6,. 
Now take a sequence {(sn, tn))nE~ in R x R such that 

q* = n~JJcbi.tn). 

We can now take (s*, t*), (s, t) E R x R such that 

B*(s*,t*> = a*(s*> + t*S = u(s) + tfi = j?(s, t). 

Notice that 

Ul (u) = a(u) + (t - t*N 

is a null curve in N. Define 

Bib, v) = q (u) + us. 

Then 

Bl(S, t*) = al(s) + t*s = a(s) + ts = a*(s*) + t*6. 

Since ~1 and C* are both null curves on N through at (s) = a, (s,) such that 

+>, ff: b*) 

are linearly dependent we can reparametrize 01 to U* with a smooth bijection h : R + IF! 
as 

Now 

B*k v) = /m-‘(u), u + t - t*). 

Hence 

#L(O,O) = q* E Im B. 

Now /I* is onto an open neighbourhood of q* and hence so is /?. This contradicts q* E 3 Im /3 
and shows that N = Im /I. We claim that 

s(s, t) = (q(s) + tS1,q(s) + t62) = 71 0 B(s,t), s, t E R 

is injective. 
Choose a basis ei = n(S), e2 in R2. Notice that n(a’(s)) and ~(6) are linearly indepen- 

dent, because T,n is an isomorphism for all q and a’(s) and S are linearly independent in 
Tq N. Writing 

(01 (s), 02(s)) = tll (sk1 + r/2(s)e2, 
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we see that q;(s) is either everywhere positive or everywhere negative. This proves the 
claim. So 

n : N + n(N) = U 

has an inverse 

p : U -+ N, L’(x) = bl,X2>/‘3@)). 

Now define 

U, = A-‘(U), Z7, = A-‘(n), h = ~3 0 Aln,. 

Then 

M = (x +h(x)u 1 x E u, c z7,). 

Notice that 

$P3(SO + s(l, F 1)) = 0 

because B(s, t) = a(s) + tb’ E N and 6 = (a, F (Y, 0), cz E R\(O}. Define 

f(s) = P3(S(l, f l)), s E I, 

L(x) = 4(x1 &x2). 

Then 

f 0 Wl>X2) = P3($h f x2)(1* f 1)) 

=/?&x1 *x2)(1, f 1) + $(x* F x2)(1, F 1)) 

= P3hvx2)t 

which proves the lemma. 0 

We can improve the lemma to the following theorem. 

Theorem 1.3. Let (M, g) denote a connected, oriented, real analytic, complete maximal 
surface in [w:. Then the following two conditions are equivalent: 
(1) (Mg) is&t. 
(2) There exists a timelike plane l7, in I$ with unit normal vector U, a real analytic 

function f : R -+ R and a Einearfunction L : l7, + R such that 

M={x+h(x)uIxEfl,}, h=foL. 

Proof We have already seen that (2) implies (1). If (M, g) is flat Lemma 1.1 guarantees the 
existence of u, L : l7, -+ IF8 and f : I + [w as in Lemma 1.1. (2) Let ~1, u2 = V, u3 denote 
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an orthonormal basis in R: where vi, u3 is an orthonormal basis in n,. In coordinates with 
respect to this orthonormal basis the surface is the image of the map 

p(x11x2) = (,ca,x:ia2x2J ) 

where al, a:! E R. The coordinates of the second fundamental form in this chart are 

1 = a;f”/(<af - a;>f’2 + 1)1’2, 

m = a~a*f”/((af - az)ff2 + l)‘/‘, 

II = &“/((a2 - a2)f2 + 1)‘/2, 1 2 

while the metric tensor is 

( 

1 + a:p a1a2.f 
I2 

ala2.f 
r2 -1 +a;f’2 . ) 

By IS, Vol. 3, p.1981 the mean curvature H is 

H = -@I; - a;)f”/2((4 - a2”)f2 + 1)3’2, 

so either 

a1 = fa2 

or 

f” = 0. 

If .f” = 0 then M is a plane and by completeness I = R. If al = a2 define 

M(u, u) = i 
u+v 

c > 2 u-u. 

Then 

t(u, u) = P(M(U, v)) = 

for some real analytic function g. In this chart the metric tensor is 

The first coordinate of a geodesic jl is then 

B1(t) = hr + Cl, bl,Cl E R 

which implies that I = R. Similarly al = -a2 implies I = R and the theorem follows. 0 
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2. Instability of maximal immersions 

Let (M, g) denote a real analytic maximal surface in I$. Also let D denote a domain in 
M with compact closure. 

Definition 2.1. D is +(-) stable if the second variation of the induced area is nonpositive 
(nonnegative) for all variations that leave the boundary 8D of D fixed. Otherwise D is 
+( -) unstable. 

Let K denote the sectional curvature function on M. We start with the following lemma. 

Lemma 2.2. Let n denote a unit normal vector$eld on an open neighbourhood of some 

p E M and S,, the shape operator derived from n. Then 

(1) K(p) 5 0 ifs&(p) has only real eigenvalues hl, h2. 

(2) K(p) > 0 ifs&(p) has eigenvalues h = fib, b # 0. 

(3) trI&tp)2l = -2KCp). 
In (1) K(p) = hlA2. In (2) K(p) = b2. 

ProoJ: S,(p) is a self-adjoint operator. Let ut ,212 denote an orthonormal basis of Tp M with 
vt timelike. Since M is a maximal surface the matrix representation of S,, (p) in basis VI, v2 
is 

{s*(P)li, j = (-“:, :iL). 

Define 

A = 4(af - a;). 

There are now two cases to consider. 
(1) A 2 0. There are two real eigenvalues 

and 

K(p) = A112 = -;(A; + $) = -itr(S,(p)2} 5 o 

by the Gauss equation. 
(2) A < 0. Here the eigenvalues are 

k = &j/a; - a: = fib 

and the Gauss equation gives 

K(p) = ai - a: = b2, tr(&(p)2] = 2(af -a;). 

The lemma follows. 
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We can now prove the following theorem. 

Theorem 2.3. Every domain D c M with compact closure is +(-) unstable. 

Proo$ Let D denote a domain in M with compact closure and take a p E D. Let G denote 
a local Gauss map defined on an open neighbourhood W of p. There exists an isometry A 

of IR: such that 

A(G(P)) = (0,0,1). 

According to [6] there exist [i differentiable real analytic functions f, g : V + O_ such that 

@Cf. g) : V + U c A(D) 

is a coordinate system around A(p) on N = A(M). Here @(f, g) is defined by [6, 7.31. We 
have the formulas 

K(z) = 16k’,g’)l(f, f)(l - (s,sH4(zh (f> f) = 9: + f$ 
(> )=d~@d---dy@dy), (1) 
CL(z) = -$(A f)(l - (gd))2(z), z E v, 

which will be useful later. Let 

a :]-E,C[ xN -+ N 

denote a variation of N such that 

aa 
- = hn, 
at 

where h vanishes on N\A(D) and n is a vector field on N which is a unit normal vector 
field to N on supp h. We shall proceed to define h explicitly. First let 

= R2 - u2z: - z;, q = @(f,g)(z) E U, (Y~z: + z; i R2, 

otherwise. 

We have chosen R > 0 such that ~‘2: + zz 5 R2 implies z E V. Furthermore, let k, denote 
a smooth function on Iw such that 

k*@)=O, tie, 
k*(t) = 1, t > 1, 
I k:(t) II K, Vt E R 

for some positive real number K. Then define k,(t) = k*(t/c*) for t > 0. h shall then 
denote the smooth function on N which is 

h(q) = j(z)k,(R2 - a2z; - z; - c2). 0 < l < R 

when q = @~f,~)(z) E U,(r2z: + z$ I R2 and zero otherwise. 
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By [8, p.5331 the second variation of area is 

d2& R 
--&(O) = 

J 
(-h*,&(n) - hAh) dA, C2(n) = tr{$}. 

N 

According to Lemma 2.2 this is 

s 
(-h*Q(n) - hAh) dA 

N 

= 
s 

(2h2K + k(grad h, grad h)) dA 

u 

= f 
s 

8h2(g’, g’)/(l - (g, sU2 dzr dzz f 
s 

(h: - h;) dz, dz2, 

V V 

where 

h =ah 1 
azl ’ 

h2=$ 

Now letting DR = ((~1, ~2) E IL ] a2z: + z: 5 R2} we compute 

s 
t-k; -I- k;) dzt dz2 = 

s 

a2 - 1 R4 
-kAFkdzl dz2 = -n- 

a ’ 
DR DR 

where AF denotes the flat Lorentzian Laplacian on [L. There exist positive constants Kl , K2, 

K3 such that 

I kl II Kl, 

on DR, hence 

I k2 Ii K2> I Wi,g’)l(l - kd2 II K3 

Sk2(g’,g’)/(l - (g,g))2dz, dz2 5 KM6/3a. 

D/f 

This means that there exists a+, R+ and K, R- such that 

z(a,R) = 
s 

(2k*K +~(gradk, gradk))dA 

DR 

has 

[(a+, R+) > 0, Z(a-, R-) < 0. 

Taking c > 0 sufficiently small we conclude 

d2A a+. R+ (o) > 0, 
dt2 

d2A;; R- (0) < 0 

and the theorem follows. 
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3. Maximal surfaces of revolution 

127 

Let f : I -+ [w+ denote a smooth function on an open interval around 0 in [w. Define the 
surface of revolution 

MT = {x(t,s) = (f(t) COSS, f, f(t) Sins) 1 t c 1,s c R} 

in I$ still with metric tensor d.xf - tiz + dxi. We shall assume: (a) 1 f’ 1 < 1 everywhere, or 
(b) 1 f’ 1 > 1 everywhere. In the first case MT is a smooth Lorentzian surface; in the second 
case a Riemarmian surface with the induced metric. Define 

fo = f(O), x0 = f’(0). 

Proposition 3.1. If MT is maximal, then 

(a) I C I- yjo/JG, (n - y)fo/Jq [ = J and 

f(t) = (l/D) sin(Dt + y). D = ,/g/fo, y = Arccosxu. 

(b) I c I- y/D, + 00 [or I c I- 00, - y/N and 

f(t) = signxo(l/D) sinh(Dt + y), 

where 1 xo I = cash y, y > 0, D = sign(xu) sinh y/fo. 

Pro05 Compute 

(Xr,Xt) = f’(t)* - 1, 

and in case (a) 

(Xt,.TsS) = 0, bs,xs) = f(Q2 

W(&, as), n) = -f(f,lJ~, 

where n is the second fundamental form of M and n is a unit normal vector field to M. It 
follows that f satisfies the second-order differential equation 

f’(t)* - 1 - f(t)f”(t) = 0. (2) 

(a) Define 

f*(f) = (l/D) MD? + Y), t E J. 

It is the maximal solution of (2), satisfying the given initial conditions. Since f gives 
rise to a solution of (2) it follows that I c J and f = f* on 1. 

(b) It is similar. 0 
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Let g : I + R+ denote a smooth function on an open interval around 0 in KY. Define the 
surface 

MS = (~0,s) = (g(t)coshs,g(t)sinhs,t) I t E I,s E RJ 

in I$, It is invariant under Lorentz transformations that preserve (0, 0, 1). 

Proposition 3.2. lf MS is maximal, then 

g(t) = (l/D) cosh(Dt + y), g’(0) = sinh y, D = Jg’(0)’ + 1 /g(O). 

Proo$ This time the differential equation becomes 

g(t)g”(f) - (1 + g’(r)2) = 0. 0 

Let h : I -+ R denote a smooth function defined on an open interval I c R\(O} with 
h’ -C 0. Define 

MN = {x(~,s) = (h(t) + t - s2t, h(t) - t - s2t, - 2st) ( s E F&t E I) 

which is invariant under Lorentz isometries 

( 

1 - S2/2 S2/2 s 
42 1+s2/2 s 

-S S 1 1 

preserving the null vector (1, 1,O). 

Proposition 3.3. If MN is maximal, then 

h(t) = at3 +b, a < 0, b E R. 

Proof: The differential equation becomes 

fh” - 2h’ = 0. 0 

There is a Clairaut Theorem for Lorentz surfaces of revolution 

Proposition 3.4. Let x (y (t)) = B(t), f E A be a geodesic on MT (I f’ 1 c l), MS or MN. 

Then: 

(1) On MT with /?’ timelike (spacelike): 

sinha(t)f(yt(t)) = constunt (cash c~(t)f(n (t)) = constant). 

(2) On Ms with fi’ spacelike (timelike): 

sinha!(t)g(yt (t)) = consrunt (cash a(t)g(n (t)) = constant). 
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(3) On MN with /I’ timelike (spacelike): 

sinh a(t)n (t) = constant (cash a(t)yt (t) = constant). 

Remark 3.5. In cases (1) and (3): If fi’ is timelike define (Y by 

(B’l I B’I,x,l I x, I) = sinha. 

If p’ is spacelike define (Y by 

(B’l I B’Lxtl I XI I) = sinha. 

In case (2): If /!I’ is spacelike define cr by (3) and if /3’ is timelike define (Y by (4). 

(3) 

(4) 

Prooj We have 

$21 = E(t), g12 = 0, 

Since B is a geodesic we have 

vi + (G’/W;y; = 0, 

which shows that 

g22 = G(t). 

(G o yt)y; = constant = (/3’,xS(~(t))) 

using gt2 = 0. Now use the definition of 01 to reach the conclusion of the proposition. •I 

4. Lines of curvature 

Let (M, g) denote a real analytic Lorentz surface with unit normal U in a real analytic 
semi-Riemannian manifold (N, h). When H and K denote the mean curvature and sectional 
curvature of M define 

M+ = (q E M 1 H2 - K > 01, 

M- = {q E M 1 H2 - K < 0), 

MO = (q E M 1 H2 - K = 0). 

For every q E M+ the shape operator S, derived from ll has two real eigenvalues A+(q) > 

h-(q). They give rise to two real analytic one-dimensional distributions 

A+ = ker(& - h+(q)id), 
A- = ker(& - ;I-(q)id). 

They are everywhere orthogonal since S is self-adjoint. 
MO is the semi-umbilic set. 

Proposition 4.1. Let (M, g) have constant mean curvature and p E MO. By o+ : I+ -+ 

M and D- : I- -+ M we denote two maximal null geodesics through p with linearly 

independent initial velocities. Then u+ (I+) c MO or u- (I-) c MO. 
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Pro~j Let (V, #) denote an isothermal coordinate system around p, see [6] . Define 

E = g11, F = gl2, G = g22, 

1 = (~,~(~I,~,>), m = (U, fl(%, a2)), n = (U, n(a2, a2>j, 

where U is a unit normal vector field to M. Then 

K = (In - m2)/(-E2>, H = (1 - n)/2E. 

Hence 

1, -m, = E,(l - n)/2E = E,H, my-n,- - E,H. 

Using EH = (1 - n)/2 we conclude that 

((I + n)/2)y - m, = -EH, = 0, ((I + n)/2)x - my = EH, = 0. 

Define 

O:V-+L, @ = (Cl+ n)/&m), 

which is IL differentiable, see [6]. Notice that 

(@,@) = E2(-H2 + K), 

so @ is null at p. Let L : R2 -+ R2 denote the linear map with matrix representation 

1 1 ( > 1 -1 

in the standard basis on 0X2. Then 

L 0 @ 0 ez) = (fl(Zl). fi(22)) 

for two real analytic functions ft and f2 defined on small open intervals II and I2 around 0. 
Since Q(p) is null ft (0) = 0 or f2(0) = 0. Hence 

a+(l+> c MO or a-(I-) c Mu. 0 
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